Biddulph High School Curriculum Intent

To deliver a broad and enriching curriculum through engaging and challenging lessons that provide a wide range of opportunities for all students to achieve their potential.

Students will all be prepared to take their next steps in a diverse and ever changing future ready to make a positive contribution to society.

Through a broad programme of extracurricular activities students will have the opportunities to showcase their talents and experience new challenges.

We value individuals and all that they can offer as well as supporting each other with kindness and empathy.

Curriculum Intent for Chemistry: Year 12

• Our overarching aim is to develop well rounded chemists who can not only explain complex theoretical concepts, but can investigate them practically for themselves. Investigative skills and techniques are at the heart of chemistry at BHS and we have embedded frequent opportunities for our learners to develop these at all stages of the curriculum. Our curriculum reflects the vast number of our students for whom chemistry will form part or all of their further studies and to this end, from year 9 to year 13, we deliver our lessons with the expectation that our students will take the skills and knowledge they have gained here on into their future careers

All teachers will follow the schemes of work provided by the department. This will ensure that all students receive the same high-quality provision. All units of work will provide a clear outline of the knowledge and skills required and assessments will ensure that this knowledge has been retained and that skills can be evidenced.

Teachers will ensure that gaps are closed through regular monitoring within the classroom. DINT activities will allow for interleaving and recap of previous learning. Misconceptions will be identified through effective questioning and the regular inspection of student work.

Year Group	Autumn 1	Autumn 2	Spring 1	Spring 2	Summer 1	Summer 2
9	Particle theory, equations and the periodic table	Methods of separation	Maths skills and calculating relative formula mass	pH, acids and indicators	Green Chemistry	Energetics and atomic theory
10	Atoms, isotopes and periodicity	Bonding and molar calculations	Acid, base reactions and electrolysis	Energetics and electrochemical cells. Rates of reaction.	Mock examinations and intervention	Equilibrium
11	Equilibria and extracting metals	Corrosion, Alloys and Mock examinations	Organic Chemistry	Interpreting and interacting with Earth systems.	Examinations	Examinations
12	Foundations in Chemistry. Nomenclature and alkanes	Acids and base chemistry. Periodicity. Alkene reactions and mechanisms.	Energetics. Alcohols and Haloalkanes	Hess's Law and Rates. Synthetic pathways.	Equilibria and revision. Analysis – Mass spec and IR.	Examinations. Intervention. begin Module 5 – Rates and Module 6 – Benzene.
13	Equilibria – Kc and Kp. Acids and bases. Arenes and carbonyls.	Buffers. Energetics. Carboxylic acids and derivatives. Amines and amides. C-C bond formation.	Revision Mock examinations.	Redox titration. Electrochemistry. Transition metals. Synthesis. NMR and gas chromatography.	Examinations	Examinations

Chemistry: Medium Term Overview				
Year 12	Autumn Term 1	Unit Title: Core Organic Chemistry	No of Lessons: 20	
Overview/Intent	Foundations in cheme emphasises the imporganic and forensic esters • organic nitres synthetic organic cheme analysis. Aromatic compound Directing groups are and ketones, are the importance of acyl of This section also foc is also introduced. Co carbon-carbon bond towards an organic pespecially in prepari	his module assumes knowledge and understanding of the chem- nistry and Module 4: Core organic chemistry. This module introd ortance of organic synthesis. This module also adds NMR spectra analysis. The main areas of organic chemistry studied include: • ogen compounds: amines and amino acids • polymerisation: add emistry and further development of practical skills • the importa- ls are first introduced, including the central role of delocalisation also introduced, including their importance to organic synthesis en studied. Finally, carboxylic acids and their related functional g hlorides in organic synthesis is emphasised. uses on organic nitrogen compounds, including amines, amides ondensation polymerisation is also introduced and compared w d formation in organic synthesis is stressed. Learners are also ab product. This module allows learners many opportunities to furt ng and purifying organic solids, including recrystallisation and de-	duces several new functional groups and oscopy to the instrumentation techniques used in • aromatic compounds • carboxylic acids and dition polymers and condensation polymers • ance of modern analytical techniques in organic n within the chemistry of arenes and phenols. s. The important carbonyl compounds, aldehydes groups, acyl chlorides and esters, are studied. The and amino acids. Chirality and optical isomerism with addition polymerisation. The importance of ole to consider multi-stage synthetic routes ther develop their organic practical skills,	
Assessment	Homework tasks.			

Essential Knowledge (what must students know): Benzene and aromatic compoundsEssential Skills (what must students be able to demonstrate):Lessons:Benzene and aromatic compounds• the comparison of the Kekulé model of benzene with the subsequent delocalised models for benzene in terms of p-orbital overlap forming a delocalised π-system• Students will be able to:1. Benzene• Development of the model for benzene over time. (b) the experimental evidence for a delocalised, rather than Kekulé, model for benzene in terms of bond lengths, enthalpy change of hydrogenation and resistance to reactionLearners may represent the structure of benzene or or1. Benzene0Development of the model for benzene over time. (b) the experimental evidence for a delocalised, rather than Kekulé, model for benzene in terms of bond lengths, enthalpy change of hydrogenation and resistance to reaction• Development of reactivity or• Carbonyl compounds 10. Reactions of carbonyls• Development of ne model for benzene for a delocalised, rather than Kekulé, model for benzene in terms of bond lengths, enthalpy change of hydrogenation and resistance to reaction• Development of the model for benzene or• Development of the model for benzen	
 Benzene and aromatic compounds the comparison of the Kekulé model of benzene with the subsequent delocalised models for benzene in terms of p-orbital overlap forming a delocalised π-system Development of the model for benzene over time. (b) the experimental evidence for a delocalised, rather than Kekulé, model for benzene in terms of bond lengths, enthalpy change of hydrogenation and resistance to reaction Benzene and aromatic compounds Students will be able to: Students will be able to: Benzene and reactivity Nitration Halogenation Acylation and alkylation Phenol Directing groups TEST Carbonyl compounds Reactions of carbonyls Identifying carbonyls 	
 the comparison of the Kekulé model of benzene with the subsequent delocalised models for benzene in terms of p-orbital overlap forming a delocalised π-system Development of the model for benzene over time. (b) the experimental evidence for a delocalised, rather than Kekulé, model for benzene in terms of bond lengths, enthalpy change of hydrogenation and resistance to reaction Students will be able to: Students will be able to: Learners may represent the structure of benzene in equations and mechanisms as: Learners may represent the structure of benzene in equations and mechanisms as: Development of the model for benzene in terms of bond lengths, enthalpy change of hydrogenation and resistance to reaction 	
 benzene with the subsequent delocalised models for benzene in terms of p-orbital overlap forming a delocalised π-system Development of the model for benzene over time. (b) the experimental evidence for a delocalised, rather than Kekulé, model for benzene in terms of bond lengths, enthalpy change of hydrogenation and resistance to reaction Learners may represent the structure of benzene in equations and mechanisms as: Carbonyl compounds 10. Reactions of carbonyls 11. Identifying carbonyls 	
 models for benzene in terms of p-orbital overlap forming a delocalised π-system Development of the model for benzene over time. (b) the experimental evidence for a delocalised, rather than Kekulé, model for benzene in terms of bond lengths, enthalpy change of hydrogenation and resistance to reaction Learners may represent the structure of benzene in equations and mechanisms as: Learners may represent the structure of benzene in equations and mechanisms as: A. Halogenation Acylation and alkylation Phenol Directing groups TEST Carbonyl compounds Reactions of carbonyls Identifying carbonyls 	
 overlap forming a delocalised π-system Development of the model for benzene over time. (b) the experimental evidence for a delocalised, rather than Kekulé, model for benzene in terms of bond lengths, enthalpy change of hydrogenation and resistance to reaction beanders may represent the structure of benzene in terms of bond lengths, enthalpy change of hydrogenation and resistance to reaction beanders may represent the structure of benzene in terms of bond lengths, enthalpy change of hydrogenation and resistance to reaction beanders may represent the structure of benzene in terms of bond lengths. 	
 Development of the model for benzene over time. (b) the experimental evidence for a delocalised, rather than Kekulé, model for benzene in terms of bond lengths, enthalpy change of hydrogenation and resistance to reaction equations and mechanisms as: equations and mechanisms as: adelocalised π-system equations and mechanisms as: Adviation and alkylation Phenol Directing groups TEST Carbonyl compounds Reactions of carbonyls Identifying carbonyls 	
 bevelopment of the moder for benzene over time. (b) the experimental evidence for a delocalised, rather than Kekulé, model for benzene in terms of bond lengths, enthalpy change of hydrogenation and resistance to reaction bevelopment of delocalized and the moder for benzene in terms of bond lengths, enthalpy change of hydrogenation and resistance to reaction c) or c) or<td></td>	
for a delocalised, rather than Kekulé, model for benzene in terms of bond lengths, enthalpy change of hydrogenation and resistance to reaction	
model for benzene in terms of bond lengths, enthalpy change of hydrogenation and resistance to reaction9. Carbonyl compounds 10. Reactions of carbonyls 11. Identifying carbonyls	
lengths, enthalpy change of hydrogenation and resistance to reaction 10. Reactions of carbonyls 11. Identifying carbonyls	
hydrogenation and resistance to reaction 0r 11. Identifying carbonyls	
Acceptance of the delocalised benzene For nitration mechanism, learners should 12. Carboxylic acids	
model by the scientific community in include equations for formation of NO2 +. 13. Carboxylic acid derivatives	
light of supporting experimental Halogen carriers include iron, iron halides 14. PAG 7.1	
evidence. (c) use of IUPAC rules of and aluminium halides. For the halogenation 15. PAG 7.1	
nomenclature for systematically naming mechanism, the electrophile can be 16. Amines assumed to be X+. 17. Amino acids	
 the electrophilic substitution of aromatic compounds with: (i) concentrated nitric Be able to show mechanisms for Friedel- 18. Condensation Polymers 19. Hydrolysis 	
acid in the presence of concentrated	
sulfuric acid (ii) a halogen in the presencethe nucleophile.21. Interventionof a halogen carrier (iii) a haloalkane or• Compare the reactivity of phenol to22. C-C bond formation	
acyl chloride in the presence of a halogen benzene. 23. C-C bond formation	
carrier (Friedel–Crafts reaction) and its • Know the reactions of phenol. 24. Practical Techniques.	
importance to synthesis by formation of • Predict products of reactions with arenes	
a C–C bond to an aromatic ring (see also dependant on the directing groups in terms	
6.2.4 d) Halogen carriers include iron, of position around the benzene ring.	
iron halides and aluminium halides. (e) • Recognise carbonyls.	
the mechanism of electrophilic Predict the products of the reactions with carbonyls.	

substitution in arenes for nitration and halogenation

- the explanation of the relative resistance to bromination of benzene, compared with alkenes, in terms of the delocalised electron density of the π-system in benzene compared with the localised electron density of the π-bond in alkenes
- the interpretation of unfamiliar electrophilic substitution reactions of aromatic compounds, including prediction of mechanisms

Phenols

- the weak acidity of phenols shown by the neutralisation reaction with NaOH but absence of reaction with carbonates
- the electrophilic substitution reactions of phenol: (i) with bromine to form 2,4,6-tribromophenol (ii) with dilute nitric acid to form a mixture of 2nitrophenol and 4-nitrophenol (j) the relative ease of electrophilic substitution of phenol compared with benzene, in terms of electron pair donation to the πsystem from an oxygen p-orbital in phenol
- the 2- and 4-directing effect of electrondonating groups (OH, NH2) and the 3-directing effect of electronwithdrawing groups (NO2) in electrophilic substitution of aromatic compounds

- State the tests used to identify carbonyls and know the observations expected.
- Predict the products of reactions with carboxylic acids.
- Identify the carboxylic acid derivatives and how they react.
- Identify the classification of an amine
- Know the basic properties of amines and why they act as a base.
- Be able to dray amino acids and how they react dependant on their R group.
- Draw out full diagrams to show the products on polymerisation to form esters and amides.
- Recognise chiral carbons in a range of large molecules.
- Draw enantiomers
- Identify monomers that form condensation polymers.
- Draw the products of both acid and base hydrolysis.
- Give examples including mechanisms of how to extend the carbon chain of a chemical.

Correlation between substituted group	
and position of reaction. (I) the	
prediction of substitution products of	
aromatic compounds by directing effects	
and the importance to organic synthesis	
Reactions of carbonyl compounds	
 oxidation of aldehydes using Cr2O7 2– 	
/H+ (i.e. K2Cr2O7/H2SO4) to form	
carboxylic acids	
 nucleophilic addition reactions of 	
carbonyl compounds with: (i) NaBH4 to	
form alcohols (ii) HCN [i.e.	
NaCN(aq)/H+(aq)], to form	
hydroxynitriles . the mechanism for	
nucleophilic addition reactions of	
aldehydes and ketones with NaBH4 and	
HCN	
 use of 2,4-dinitrophenylhydrazine to: (i) 	
detect the presence of a carbonyl group	
in an organic compound (ii) identify a	
carbonyl compound from the melting	
point of the	
use of Tollens' reagent (ammoniacal	
silver nitrate) to: (i) detect the presence	
of an aldehyde group (ii) distinguish	
between aldehydes and ketones,	
explained in terms of the oxidation of	
aldehydes to carboxylic acids with	
reduction of silver ions to silver.	
 explanation of the water solubility of carboxylic acids in terms of bydrogon 	
carboxylic acids in terms of hydrogen	
bonding (b) reactions in aqueous	
conditions of carboxylic acids with	

metals and bases (including carbonates, metal oxides and alkalis)

 esterification of: (i) carboxylic acids with alcohols in the presence of an acid catalyst (e.g. concentrated H2SO4) (ii) acid anhydrides with alcohols (d) hydrolysis of esters: (i) in hot aqueous acid to form carboxylic acids and alcohols (ii) in hot aqueous alkali to form carboxylate salts and alcohols Acyl chlorides (e) the formation of acyl chlorides from carboxylic acids using SOCI 2 (f) use of acyl chlorides in synthesis in formation of esters, carboxylic acids and primary and secondary amides.

Nitrogen compounds, polymers and synthesis

- the basicity of amines in terms of proton acceptance by the nitrogen lone pair and the reactions of amines with dilute acids, e.g. HCl(aq), to form salts
- the preparation of: (i) aliphatic amines by substitution of haloalkanes with excess ethanolic ammonia and amines (ii) aromatic amines by reduction of nitroarenes using tin and concentrated hydrochloric acid.

Reactions of amino acids

 the general formula for an α-amino acid as RCH(NH2)COOH and the following reactions of amino acids: (i) reaction of the carboxylic acid group with alkalis and in the formation of esters (ii) reaction of the amine group with acids Amides (b) structures of primary and secondary amides)

Chirality

 optical isomerism (an example of stereoisomerism, in terms of nonsuperimposable mirror images about a chiral centre) Learners should be able to draw 3-D diagrams to illustrate stereoisomerism. identification of chiral centres in a molecule of any organic compound.

Condensation polymers

condensation polymerisation to form: (i) polyesters (ii) polyamides Formation from carboxylic acids/dicarboxylic acids (or respective acyl chlorides) and from alcohols/diols or amines/diamines. (b) the acid and base hydrolysis of: (i) the ester groups in polyesters (ii) the amide groups in polyamides (c) prediction from addition and condensation polymerisation of: (i) the repeat unit from a given monomer(s) (ii) the monomer(s) required for a given section of a polymer molecule (iii) the type of polymerisation.

Extending carbon chain length

- the use of C–C bond formation in synthesis to increase the length of a carbon chain
- formation of C C- /N by reaction of: (i) haloalkanes with CN- and ethanol,

including nucleophilic substitution mechanism

- ii) carbonyl compounds with HCN, including nucleophilic addition mechanism
- reaction of nitriles from (b): (i) by reduction (e.g. with H2/Ni) to form amines (ii) by acid hydrolysis to form carboxylic acids

٠

Practical Skills:

Module 1 of the specification content relates to the practical skills learners are expected to gain throughout the course, which are assessed throughout the written examinations and also through the Practical Endorsement (see Section 5). Practical activities are embedded within the learning outcomes of the course to encourage practical activities in the classroom which contribute to the achievement of the Practical Endorsement (Section 5) as well as enhancing learners' understanding of chemical theory and practical skills..

 the techniques and procedures used for the preparation and purification of organic solids involving use of a range of techniques (see also 4.2.3 a) including: (i) organic preparation • use of Quickfit apparatus • distillation and heating under reflux (ii) purification of an organic solid • filtration under reduced pressure • recrystallisation • measurement of melting points

Careers Links:	Enrichment:	MY PB
Nuclear physics with particle models. Laboratory	Students will have the opportunity to attend the trip	Social Me- active listening, speaking effectively,
work. Analytical chemist. Medicinal chemist.	to Geneva.	working with others
Forensic Scientist.		Practical work will require aspects of the social me
		strand
Homework		Thinking Me – evaluating & creativity
SENECA learning and examination style questions		Evaluation will be utilised when assessing data from
to support learning and improve skill.		investigations
Work booklet for homework tasks.		This is Me – Resilience, responsibility, self-
Completion of additional reading and research.		motivation, integrity, self-management
		Students will need to demonstrate resilience and self-
		management when looking at the assessed points
		across the lessons

Chemistry Medium Term Overview					
Year 12	Spring Term 2	Unit Title: Analysis and Synthesis	No of Lessons: 35		
Overview	This section develops and complements the spectroscopic areas of organic chemistry previously encountered (see Module 4: Core organic chemistry; 4.2.4 Analytical techniques). This section demonstrates how analytical techniques introduced in Module 4 (infrared spectroscopy, mass spectrometry and elemental analysis) may be used in combination with NMR spectroscopy to provide evidence of structural features in molecules. The instrumentation methods of analysis studied during the A level course provide				
Assessment	learners with an import	ant base of knowledge, understanding and awareness for further study in H	igher Education and in many		

and identified using sim		how unknown organic functional groups can be analysed
Mock examinations	-	
Essential Knowledge (what must students know):	Essential Skills (what must students be able to	Lessons:
	<u>demonstrate):</u>	1 – 4 Revision for mock examinations
Synthetic routes		5 – 9 Mock examinations
 for an organic molecule containing several 	Students will be able to:	1 – 14 Intervention and QLAs
functional groups: (i) identification of	 After the mock examinations, students 	15 – Synthesis
individual functional groups (ii) prediction	will use their QLAs to identify caps in	16 – Synthesis
of properties and reactions Development of	their subject knowledge and close them	17 – Gas chromatography
synthetic routes. (c) multi-stage synthetic	gaps through a range of activities	18 NMR
routes for preparing organic compounds.	 learners will be expected to be able to 	19 – NMR
Types of chromatography	devise multistage synthetic routes by	20 – NMR
 interpretation of one-way TLC 	applying transformations between all	21 – NMR
chromatograms in terms of Rf values	functional groups studied throughout	22 – NMR
 Interpretation of TLC to analyse organic 	the specification. Extra information	23 – Combined techniques
compounds. (b) interpretation of gas	may be provided on exam papers to	24 – Combined techniques
chromatograms in terms of: (i) retention	extend the learner's toolkit of organic	25 – 35 Past papers
times (ii) the amounts and proportions of	reactions.	
the components in a mixtureTo include	 Learners will be expected to identify 	
creation and use of external calibration	functional groups encountered in	
curves to confirm concentrations of	Module	
components. Peak integration values will be	• All carbon-13 NMR spectra that are	
supplied. HSW3 Interpretation of GC to	assessed will be proton decoupled. In	
analyse organic compounds. Tests for	examinations, NMR chemical shift	
organic functional groups (c) qualitative	values will be provided on the Data	
analysis of organic functional groups on a	Sheet. Restricted to functional groups	
test-tube scale; processes and techniques	studied in the A level specification.	
needed to identify the following functional	• Learners will be expected to identify	
groups in an unknown compound:	aromatic protons from chemical shift	
(i) alkenes by reaction with bromine (see	values but will not be expected to	
also 4.1.3 f) (ii) haloalkanes by reaction with	analyse their splitting patterns.	

aqueous silver nitrate in ethanol (iii) phenols by weak acidity but no reaction with CO3 2– (iv) carbonyl compounds by reaction with 2,4- DNP (v) aldehydes by reaction with Tollens' reagent

 primary and secondary alcohols and aldehydes by reaction with acidified dichromate (vii) carboxylic acids by reaction with CO3 2–

NMR Spectroscopy

- analysis of a carbon-13 NMR spectrum of an organic molecule to make predictions about: (i) the number of carbon environments in the molecule (ii) the different types of carbon environment present, from chemical shift values (iii) possible structures for the molecule
- (b) analysis of a high resolution proton NMR spectrum of an organic molecule to make predictions about: (i) the number of proton environments in the molecule (ii) the different types of proton environment present, from chemical shift values (iii) the relative numbers of each type of proton present from relative peak areas, using integration traces or ratio numbers, when required
- the number of non-equivalent protons adjacent to a given proton from the spin– spin splitting pattern, using the n + 1 rule (v) possible structures for the molecule
- (c) prediction of a carbon-13 or proton NMR spectrum for a given molecule

 Use their knowledge of synthetic pathways, identify a products using a range of methods and data provided such as mass spec, IR spec, NMR graphs and data that will enable to calculate the empirical formula of a molecule.

 (i) the use of tetramethylsilane, TMS, as the standard for chemical shift measurements (ii) the need for deuterated solvents, e.g. CDCl 3, when running an NMR spectrum (iii) the identification of O–H and N–H protons by proton exchange using D2O 		
 Combined techniques deduction of the structures of organic compounds from different analytical data including: (i) elemental analysis (ii) mass spectra (iii) IR spectra (iv) NMR spectra. 		
Careers Link:	Enrichment	МУ РВ
Forensics and police work.	Students will be taught about the role of	Social Me- active listening, speaking effectively,
Environmental scientists.	analysis in drug production and detection.	working with others
Medicinal chemistry		Practical work will require aspects of the social me
		strand
		Thinking Me – evaluating & creativity
Homework		Evaluation will be utilised when assessing data from
SENECA learning and examination style questions to		investigations
support learning and improve skill.		This is Me – Resilience, responsibility, self-motivation,
Homework booklets.		integrity, self-management
Research and further reading.		Students will need to demonstrate resilience and self-
		management when looking at the assessed points across the lessons

Chemistry Medium Term Overview					
Year 9Summer Term 3Unit Title: End of Year examinationsNo of Lessons: NA					
Overview					
	Periodic table, elem	Periodic table, elements and physical chemistry (Component 01)			
	This component is w	This component is worth 100 marks and is split into two sections and assesses content from teaching modules 1, 2, 3 and 5. Learners			
	answer all questions	answer all questions. Section A contains multiple choice questions. This section of the paper is worth 15 marks. Section B includes			

	short answer question styles (structured questions, problem solving, calculations, practical) and extended response questions. This section of the paper is worth 85 marks.
Assessment	 Synthesis and analytical techniques (Component 02) This component is worth 100 marks and is split into two sections and assesses content from teaching modules 1, 2, 3 and 5. Learners answer all questions. Section A contains multiple choice questions. This section of the paper is worth 15 marks. Section B includes short answer question styles (structured questions, problem solving, calculations, practical) and extended response questions. This section of the paper is worth 85 marks. Unified chemistry (Component 03) This component assesses content from across all teaching modules 1 to 6. Learners answer all questions. This component is worth 70 marks. Question styles include short answer (structured questions, problem solving, calculations, practical) and extended response questions. Practical Endorsement in chemistry (Component 04) Performance in this component is reported separately to the performance in the A level as measured through externally assessed components 01 to 03. This non-exam assessment component rewards the development of practical competency in chemistry and is teacher assessed. Learners demonstrate competence in the range of skills and techniques specified in Section 1.2 of the specification by carrying out a minimum of 12 assessed practical activities. The Practical Endorsement is teacher assessed against the Common Practical Assessment Criteria as specified in Section 5g, Learners may work in groups but must demonstrate and record independent evidence of their competency. Teachers who award a pass to their learners must be confident that each learner consistently and routinely exhibits the competencies listed in Section 1.2.2 before completion of the A level course. The practical activities provided by OCR are all mapped against the specification and assessment criteria.

BIDDULPH HIGH SCHOOL CURRICULUM DOCUMENTATION