Biddulph High School Curriculum Intent

To deliver a broad and enriching curriculum through engaging and challenging lessons that provide a wide range of opportunities for all students to achieve their potential.

Students will all be prepared to take their next steps in a diverse and ever changing future ready to make a positive contribution to society.

Through a broad programme of extracurricular activities students will have the opportunities to showcase their talents and experience new challenges.

We value individuals and all that they can offer as well as supporting each other with kindness and empathy.

Curriculum Intent for Biology:

The lessons in the Science department provoke students' curiosity through exciting lessons; creating an environment where students will need to critically think and provide logical reasoning using various methods of investigation, such as observation, comparison, experimentation, and mathematical manipulation of data.

All teachers will follow the schemes of work and resources provided by the department. This will ensure that all students receive the same high-quality provision. All units of work will provide a clear outline of the knowledge and skills required and assessments will ensure that this knowledge has been retained and that skills can be evidenced.

Teachers will ensure that gaps are closed through regular monitoring within the classroom. DINT activities will allow for interleaving and recap of previous learning. Misconceptions will be identified through effective questioning and the regular inspection of student work.

Year Group	Autumn 1	Autumn 2	Spring 1	Spring 2	Summer 1	Summer 2
9	Cell Structures. Animal and plant cells, cell division. culturing microorganisms	Osmosis, diffusion, active transport.	Microscopy and maths skills. The human digestive system.	The heart and blood vessels. Cardiovascular issues and how to treat cardiovascular disease.	Non-communicable disease, Health issues, The effect of lifestyle on some non- communicable diseases, cancer.	Plant organ systems Transpiration. The root, stem and leaves. The xylem and the phloem vessels.
10	communicable diseases viral diseases Bacterial diseases fungal diseases human defence systems vaccination Producing monoclonal Discovery and development of drugs antibodies (HT only)	Plant disease (biology only) Plant defence responses Photosynthesis Rate of photosynthesis required practical activity 6 light intensity uses of glucose from photosynthesis aerobic respiration	Response to exercise Homeostasis uses of glucose from photosynthesis tests to identify starch, glucose and proteins (qualitative reagents) Hormones to treat fertility (HT only) Homeostasis he human nervous system structure and function	The brain (biology only) The eye (biology only) Ray diagrams and lenses Control of body temperature (biology only) Hormonal coordination in humans	Hormones in human reproduction Contraception The use of hormones to treat infertility (HT only) Negative feedback (HT only) Revision for mocks 28/04/25 - 02/05/25	Plant hormones (biology only) Required practical activity 8: tropism o seedlings Use of plant hormones (HT only) Revision for mocks
11	Natural selection Evidence for evolution Evolution theories	Sampling part 1 Sampling part 2 Biodiversity Maintaining biodiversity Monitoring biodiversity	Food security Feeding the world Selective breeding Genetic engineering Use of biotechnology in farming	Health and disease Preventing disease Monoclonal antibodies Plant disease and defences. Bloo and the body defence mechanism	Smoking and alcohol Exercise and diet Treating CVD New medicines Examinations	Revision for GCSE examinations

				vaccinations		
12	Basic components of Living systems. Biological molecules. Enzymes.	Plasma membranes. Cell division.	Exchanges surfaces and breathing transport in animals.	Transport in plants. Classification and evolution.	Biodiversity . Communicable diseases.	Neuronal communication. Hormonal communication.
13	Neuronal communication. Hormonal communication. Homeostasis.	Plant responses. Energy for biological processes. Respiration	Genetics of living systems. Patterns of inheritance and variation.	Manipulating genomes. Cloning and biotechnology.	Ecosystems. Populations and sustainability.	Preparation for A level examinations

	erm Overview				
Year 12	Autumn Term	Unit Title: Cell level systems	No of Lessons: 48		
Overview	fundamental to the stuvariety of organisms. E respect to their structu Membranes form barr membranes relates to specialisation of cells i	have similarities in cellular structure, biochemistry and function. An understanding of these similarities is study of the subject. This module gives learners the opportunity to use microscopy to study the cell structure of s. Biologically important molecules such as carbohydrates, proteins, water and nucleic acids are studied with acture and function. The structure and mode of action of enzymes in catalysing biochemical reactions is studied arriers within, and at the surface of, cells. This module also considers the way in which the structure of to the different methods by which molecules enter and leave cells and organelles. The division and subsequen ls is studied, together with the potential for the therapeutic use of stem cells. Learners are expected to apply canding and other skills developed in this module to new situations and/or to solve related problems.			
Assessment	Students will be asses terminology.	sed through a series of small tests to identify any misc	onceptions and the correct use of key scientific		
Essential Knowledge (wl	hat must students know):				
		Essential Skills (what must students be able to	Lessons to cover		
Biology is the study of living organisms. Every		Essential Skills (what must students be able to demonstrate):	Lessons to cover 2.1 Microscopy		
Biology is the study of liv					
Biology is the study of liv living organism is made u	ving organisms. Every		2.1 Microscopy		
	ving organisms. Every up of one or more cells,	demonstrate):	2.1 Microscopy PAG 1.1 light microscopes to study mitosis		
living organism is made u	ring organisms. Every up of one or more cells, the structure and	demonstrate): Learners should be able to demonstrate and apply	2.1 Microscopy PAG 1.1 light microscopes to study mitosis 2.2 Magnification and Calibration		
living organism is made u therefore understanding function of the cell is a fu the study of biology. Since	ving organisms. Every up of one or more cells, the structure and undamental concept in ce Robert Hooke coined	demonstrate): Learners should be able to demonstrate and apply	 2.1 Microscopy PAG 1.1 light microscopes to study mitosis 2.2 Magnification and Calibration 2.3 More microscopy 		
living organism is made u therefore understanding function of the cell is a fu the study of biology. Sinc the phrase 'cells' in 1665	ving organisms. Every up of one or more cells, the structure and undamental concept in ce Robert Hooke coined 5, careful observation	demonstrate): Learners should be able to demonstrate and apply their knowledge and understanding of:	 2.1 Microscopy PAG 1.1 light microscopes to study mitosis 2.2 Magnification and Calibration 2.3 More microscopy 2.4 Eukaryotic cell structure 2.5 The ultrastructure of plant cells 2.6 Prokaryotic and eukaryotic cells 		
living organism is made u therefore understanding function of the cell is a fu the study of biology. Sind the phrase 'cells' in 1665 using microscopes has re	ving organisms. Every up of one or more cells, the structure and undamental concept in ce Robert Hooke coined b, careful observation evealed details of cell	demonstrate):Learners should be able to demonstrate and apply their knowledge and understanding of:• the use of microscopy to observe and	 2.1 Microscopy PAG 1.1 light microscopes to study mitosis 2.2 Magnification and Calibration 2.3 More microscopy 2.4 Eukaryotic cell structure 2.5 The ultrastructure of plant cells 		
living organism is made u therefore understanding function of the cell is a fu the study of biology. Since the phrase 'cells' in 1665 using microscopes has re- structure and ultrastruct	ving organisms. Every up of one or more cells, the structure and undamental concept in ce Robert Hooke coined s, careful observation evealed details of cell cure and provided	demonstrate): Learners should be able to demonstrate and apply their knowledge and understanding of: • the use of microscopy to observe and investigatedifferent types of cell and cell	 2.1 Microscopy PAG 1.1 light microscopes to study mitosis 2.2 Magnification and Calibration 2.3 More microscopy 2.4 Eukaryotic cell structure 2.5 The ultrastructure of plant cells 2.6 Prokaryotic and eukaryotic cells 3.1 Biological elements 3.2 Water 		
living organism is made u therefore understanding function of the cell is a fu the study of biology. Sind the phrase 'cells' in 1665 using microscopes has re	ring organisms. Every up of one or more cells, the structure and undamental concept in ce Robert Hooke coined s, careful observation evealed details of cell cure and provided otheses regarding the	demonstrate): Learners should be able to demonstrate and apply their knowledge and understanding of: • the use of microscopy to observe and investigatedifferent types of cell and cell	 2.1 Microscopy PAG 1.1 light microscopes to study mitosis 2.2 Magnification and Calibration 2.3 More microscopy 2.4 Eukaryotic cell structure 2.5 The ultrastructure of plant cells 2.6 Prokaryotic and eukaryotic cells 3.1 Biological elements 		

The cells of all living organisms are composed of biological molecules. Proteins, carbohydrates and lipids are three of the key groups of biological macromolecules that are essential for life. A study of the structure of these macromolecules allows a better understanding of their functions in living organisms.

Nucleic acids are essential to heredity in living organisms. Understanding the structure of nucleotides and nucleic acids allows an understanding of their roles in the storage and use of genetic information and cell metabolism.

Metabolism in living organisms relies upon enzyme-controlled reactions. Knowledge of how enzymes function and the factors that affect enzyme action has improved our understanding of biological processes and increased our use of enzymes in industry.

Membranes are fundamental to the cell theory. The structure of the plasma membrane allows cells to communicate with each other. Understanding this ability to communicate is important as scientists increasingly make use of membrane-bound receptors as sites for the action of medicinal drugs.

Understanding how different substances enter cells is also crucial to the development of mechanisms for the administration of drugs.

•	the use of staining in light microscopy	3.5 Lipids
•	the representation of cell structure as seen	3.6 Structure of proteins
	under the light microscope using drawings	3.7 types of proteins
	andannotated diagrams of whole cells or	3.8 nucleic acids
	cells in sections of tissue	3.9 DNA replication and the genetic code
•	the use and manipulation of the	3.10 Protein synthesis
	magnificationformula	3.11 ATP
•	the difference between magnification and	4.1 Enzymes
	resolution	4.2 Factors affecting enzyme activity
•	the ultrastructure of eukaryotic cells and	4.3 Enzyme inhibitors
	the functions of the different cellular	4.4 Cofactors, coenzymes and prosthetic groups
	components	5.1 The structure and function of membranes
•	photomicrographs of cellular components in	5.2 Factors affecting membrane structure
	arange of eukaryotic cells	5.3 Diffusion
•	the interrelationship between the organelles	5.4 active transport
	involved in the production and secretion of	5.5 Osmosis
	proteins	6.1 The cell cycle
•	, the importance of the cytoskeleton	6.2 Mitosis
•	the similarities and differences in the	6.3 Meiosis
	structure and ultrastructure of prokaryotic	6.4 The organisation and specialisation of cells
	and eukaryoticcells.	6.5 stem cells
•	how hydrogen bonding occurs between	9.1 Transport systems in dicotyledonous plants
	water molecules, and relate this, and other	9.2 Water transport in multicellular plants
	properties of water, to the roles of water for	9.3 Transpiration
	living organisms	9.4 Translocation
•	the concept of monomers and polymers and	9.5 Plant adaptations to water availability
	the importance of condensation and	
	hydrolysisreactions in a range of biological	
	molecules	Synoptic links:
•	the chemical elements that make up	- biological membranes
	biologicalmolecules	- cell division
		 organelles to greater detail elsewhere (e.g. respiration, photocynthesis, gono expression)
		respiration, photosynthesis, gene expression)

During the cell cycle, genetic information is copied and passed to daughter cells. Microscopes can be used to view the different stages of the cycle. In multicellular organisms, stem cells are modified to produce many different types of specialised cell.

Understanding how stem cells can be modified has huge potential in medicine. To understand how a whole organism functions, it is essential to appreciate the importance of cooperation between cells, tissues, organs and organ systems.

As plants become larger and more complex, transport systems become essential to supply nutrients to, and remove waste from, individual cells.

Practical skills:

- Preparation of microscope slides
- Use of differential staining to identify different cellular components and cell types
- Use of light microscope to enable examinations of slides
- Use of an eye piece graticule
- Use of a stage micrometer

- the ring structure and properties of glucose as an example of a hexose monosaccharide and thestructure of ribose as an example of a pentose monosaccharide
- the synthesis and breakdown of a disaccharideand polysaccharide by the formation and breakage of glycosidic bonds
- the structure of starch (amylose and amylopectin), glycogen and cellulose molecules
- how the structures and properties of glucose, starch, glycogen and cellulose molecules relate totheir functions in living organisms
- the structure of a triglyceride and a phospholipidas examples of macromolecules
- the synthesis and breakdown of triglycerides by the formation and breakage of ester bondsbetween fatty acids and glycerol
- how the properties of triglyceride, phospholipidand cholesterol molecules relate to their functions in living organisms
- the general structure of an amino acid
- the synthesis and breakdown of dipeptides andpolypeptides, by the formation and breakage ofpeptide bonds
- the levels of protein structure
- the structure and function of globular proteinsincluding a conjugated protein
- the properties and functions of fibrous proteins

Pathogen types

Synoptic links:

-

- enzymes
- qualitative testing that allows us to track hydrolysis reactions
- link to diagnosis using excretory products
- Photosynthetic pigments

Synoptic links:

- DNA sequencing and genetic engineering
- Enzymes
- Function of eukaryotic organelles

Homework

Seneca topic based homework to be set every fortnight.

Seneca: Topics will be set to allow students to understand communicable and non-communicable disease including plant diseases.

Examination technique: understanding key command words within examination style questions to build confidence in student responses

the key inorganic ions that are involved in

- Use of photomicrograph for the production of scientific drawings with annotations
- Interpret photomicrographs and use them to practice drawing skills.
- Extraction of strawberry DNA
- Effect of pH on amylase activity -Alternative
- Effect of concentration on the activity of trypsin
- PAG5 OCR suggested activities Effect of temperature on membrane permeability
- the principles and uses of paper and thin layer chromatography to separate biologicalmolecules / compounds
- practical investigations to analyse biological solutions using paper or thin layer chromatography
- quantitative methods to determine the concentration of a chemical substance in a solution
- practical investigations into the purification of DNA by precipitation

- biological processes
 the structure of a nucleotide as the monomerfrom which nucleic acids are made
 the synthesis and breakdown of
- polynucleotides by the formation and breakage of phosphodiesterbonds
- the structure of ADP and ATP as phosphorylatednucleotides
- the structure of DNA (deoxyribonucleic acid)
- semi-conservative DNA replication
- the nature of the genetic code
- transcription and translation of genes resulting in the synthesis of polypeptides
- the role of enzymes in catalysing reactions that affect metabolism at a cellular and wholeorganism level
- the mechanism of enzyme action
- the effects of pH, temperature, enzyme concentration and substrate concentrationon enzyme activity
- the need for coenzymes and cofactors in someenzyme-controlled reactions
- the roles of membranes within cells and at the surface of cells
- the fluid mosaic model of membrane structureand the roles of its components
- factors affecting membrane structure and permeability
- the movement of molecules across membranes
- the movement of water across membranes

practical investigations into the effects of pH, temperature, enzyme concentration andsubstrate concentration on enzyme activity	 by osmosis and the effects that solutions of different water potential can have on plant and animal cells the cell cycle how the cell cycle is regulated the main stages of mitosis 	
ractical investigations into factors affecting membrane structure and permeability	 sections of plant tissue showing the cell cycle andstages of mitosis the significance of mitosis in life cycles the significance of meiosis in life cycles 	
ractical investigations into the factors affecting diffusion rates in model cells	 the production of erythrocytes and neutrophilsas examples of distinct, differentiated cells derived from a common stem cell in bone marrow 	
ractical investigations into the effects of solutions of different water potential on plant and animal cells.	 the potential uses of stem cells in research and medicine the need for transport systems in multicellularplants 	
he examination and drawing of stainedsections of plant tissue to show the distribution of xylem and phloem	 the structure and function of the vascularsystem in the roots, stems and leaves of herbaceous dicotyledonous plants 	
he dissection of stems, both longitudinally and transversely, and their examination todemonstrate the position and structure of xylem vessels	 the process of transpiration and theenvironmental factors that affect transpiration rate 	
ractical investigations to estimate transpiration rates		

- рі ٠ of С CC
- pra af ре
- pra af
- pra SO pl
- the st sh pł
- the ar to st
- pra tra

Examination technique: understanding key command words within examination style questions to build confidence in student responses		
Careers Link EKG technician. Exercise physiologist. Cardiovascular technician. Respiratory therapist. Medical sonographer. Cardiology consultant. Cardiac nurse. Cardiology physician.	Maths skills required:Maths opportunity for the calculation of <i>Rf</i> value.Maths opportunities for understanding and using the magnification formula as well as expression of decimal and standard form.Maths opportunity to calculate temperature coefficient, drawing and interpreting graphs, identify uncertainties, predict graph, represent linear relationship, calculate rates from graphs and measure the gradient on a curve.To include reference to the temperature coefficient(Q_{10}). $Q_{10} = \frac{R_2}{R}$	MY PB Social Me- active listening, speaking effectively, working with others Practical work will require resilience and responsibility. Thinking Me – evaluating & creativity Evaluation will be utilised when comparing different methods of microscopy This is Me – Resilience, responsibility, self- motivation, integrity, self-management Students will need to demonstrate resilience and self- management when looking at the assessed points across the lessons

Biology Medium	Term Overview				
Year 12	Spring term	Module 3 exchange and transpor	t r	No of Lessons: 53	
Overview	terrestrial plants. The transport systems in r used to illustrate the	ers study the structure and function of gas exchange and transport systems in a range of animals and in e significance of surface area to volume ratio in determining the need for ventilation, gas exchange and multicellular organisms is emphasised. The examples of terrestrial green plants and a range of animal phy principle. Learners are expected to apply knowledge, understanding and other skills developed in this model d/or to solve related problems.			
Assessment Students will be assessed through a series of small tests to identify any misconceptions and the terminology.			nisconceptions and the corr	ect use of key scientific	
Essential Knowledge	(what must students know)	Essential Skills (what must students be able to	Lessons to cover		
	arger and more active, xchange systems become	<u>demonstrate):</u> Learners should be able to demonstrate and	7.1 Specialised exchange s	urfaces	
essential to supply ox dioxide from, their bo	ygen to, and remove carbon odies.	apply their knowledge and understanding of:	PAG 1.3 Light microscope	to examine lung tissue	
Ventilation and gas e	xchange systems in mammals,	 the need for transport systems in multicellular animals 	7.3 Measuring the process	6	
bony fish and insects	are used as examples of the ons of exchange surfaces in	 the different types of circulatory systems 	7.4 Ventilation in other or	ganisms	
animals.		 the structure and functions of arteries, arterioles, capillaries, venules and veins 	Fish and locust dissection		
•	ger and more complex,	• the formation of tissue fluid from	8.1 Transport in multicellu	lar animals	
transport systems become essential to supply nutrients to, and remove waste from, individual		 plasma the external and internal structure of 	8.2 Blood vessels		
cells. Organisms are surrounded by pathogens and have		the mammalian heartthe dissection, examination and	8.3 Blood, tissue fluid and	lymph	
evolved defences aga	inst them. Medical	drawing of the external and internal structure of the mammalian heart	8.4 Transport of oxygen ar	nd co2 in the blood	
defences.	ised to support these natural	the cardiac cycle	8.5 the heart		

Biodiversity refers to the variety and complexity of life. It is an important indicator in the study of habitats.

Evolution has generated a very wide variety of organisms. The fact that all organisms share a common ancestry allows them to be classified. Classification is an attempt to impose a hierarchy on the complex and dynamic variety of life on Earth.

Practical skills:

- the examination of microscope slides to show the histology of exchange surfaces
- the dissection, examination and drawing of the external and internal structure of the mammalian heart
- the use and interpretation of electrocardiogram (ECG) traces
- the examination and drawing of stained sections of plant tissue to show the distribution of xylem and phloem
- the dissection of stems, both longitudinally and transversely, and their examination to demonstrate the position and structure of xylem vessels

- how heart action is initiated and coordinated
- the role of haemoglobin in transporting oxygen and carbon dioxide
- the oxygen dissociation curve for fetal and adult human haemoglobin.
- the need for transport systems in multicellular plants
- the structure and function of the vascular system in the roots, stems and leaves of herbaceous dicotyledonous plants
- the examination and drawing of stained sections of plant tissue to show the distribution of xylem and phloem
- the process of transpiration and the environmental factors that affect transpiration rate
- the transport of water into the plant, through the plant and to the air surrounding the leaves
- adaptations of plants to the availability of water in their environment
- the mechanism of translocation
- the different types of pathogen that can cause communicable diseases in plants and animals
- the means of transmission of animal and plant communicable pathogens
- plant defences against pathogens
- the primary non-specific defences against pathogens in animals

10.1 Classification

PAG 2.1 Dissection of the heart

10.2 the five kingdoms

10.3 Phylogeny

10.4 Evidence for evolution

10.5 Types of variation

10.6 Representing variation graphically

10.7 Adaptations

10.8 Changing population characteristics

11.3 Sampling techniques

11.4 Calculating biodiversity

11.5 Calculating genetic biodiversity

11.6 Factors affecting biodiversity

- 11.7 Reasons for maintaining biodiversity
- 11.8 Methods for maintaining biodiversity
- 12.1 Animal and plant pathogens

- practical investigations to estimate transpiration rates
- practical investigations collecting random and non-random samples in the field

Maths skills required:

- To include an appreciation of size, metabolic rate and surface area to volume ratio (SA:V).
- Students should be able to translate information about reaction times between numerical and graphical forms.
- The formula will be provided for diversity calculations where needed in assessments and does not need to be recalled AND the interpretation of both high and low values of Simpson's Index of Diversity (D)
- how to measure species richness and species evenness in a habitat
- the use and interpretation of Simpson's Index of Diversity (D) to calculate the biodiversity of a habitat
- To include calculations of genetic diversity within isolated populations, for example the percentage of gene variants (alleles) in a genome. proportion of polymorphic gene

 in the specific immune response the primary and secondary immune responses an outline of the action of opsonins, agglutinins and anti-toxins an outline of the action of opsonins, agglutinins and anti-toxins autoimmune diseases the principles of vaccination and the role of vaccination programmes in the prevention of epidemics the benefits and risks of using antibiotics to manage bacterial infection. how biodiversity may be considered at different levels how sampling is used in measuring the biodiversity of a habitat and the importance of sampling how to measure species richness and species evenness in a habitat the factors affecting biodiversity n situ and ex situ methods of maintaining biodiversity international and local conservation agreements made to protect species and habitats the biological classification of species the biomial system of naming species 			12.2 Animal and plant diseases
 responses an outline of the action of opsonins, agglutinins and anti-toxins autoimmune diseases the principles of vaccination and the role of vaccination programmes in the prevention of epidemics the benefits and risks of using antibiotics to manage bacterial infection. how biodiversity may be considered at different levels how sampling is used in measuring the biodiversity of a habitat and the importance of sampling how to measure species richness and species evenness in a habitat the factors affecting biodiversity n situ and ex situ methods of maintaining biodiversity n situ and ex situ methods of maintaining biodiversity international and local conservation agreements made to protect species and habitats the biological classification of species the bionmial system of naming species 		in the specific immune response	12.3 The transmission of communicable diseases
agglutinins and anti-toxins12.5 Non-specific animal defences against pathogensautoimmune diseases12.6 The specific immune systemthe principles of vaccination programmes in the prevention of epidemics12.6 The specific immune systemthe benefits and risks of using antibiotics to manage bacterial infection.12.7 Preventing and treating diseasethe benefits and risks of using antibiotics to manage bacterial infection.12.7 Preventing and treating diseasehow biodiversity may be considered at different levelsSynoptic links:how sampling is used in measuring the biodiversity of a habitat and the importance of samplingSynoptic links:how to measure species richness and species evenness in a habitatPhotosynthesisthe factors affecting biodiversityTissues and organs.n situ and ex situ methods of maintaining biodiversitySynoptic links:n situ and ex situ methods of maintaining biodiversityProteans and enzymesethe biological classification of species a the biological classification of speciesethe biological classification of species the binomial system of naming species		responses	12.4 Plant defences against pathogens
 the principles of vaccination and the role of vaccination programmes in the prevention of epidemics the benefits and risks of using antibiotics to manage bacterial infection. how biodiversity may be considered at different levels how sampling is used in measuring the biodiversity of a habitat and the importance of sampling how to measure species richness and species evenness in a habitat the factors affecting biodiversity n situ and ex situ methods of maintaining biodiversity n situ and ex situ methods of maintaining biodiversity international and local conservation agreements made to protect species and habitats the biological classification of species the bionomial system of naming species 		agglutinins and anti-toxins	12.5 Non-specific animal defences against pathogens
 Prevention of epidemics the benefits and risks of using antibiotics to manage bacterial infection. how biodiversity may be considered at different levels how sampling is used in measuring the biodiversity of a habitat and the importance of sampling how to measure species richness and species evenness in a habitat the factors affecting biodiversity n situ and ex situ methods of maintaining biodiversity international and local conservation agreements made to protect species and habitats the biological classification of species the bionomial system of naming species the biological classification of species the bionomial system of naming species the biological classification of species the bionomial system of naming species 	ic		12.6 The specific immune system
 antibiotics to manage bacterial infection. how biodiversity may be considered at different levels how sampling is used in measuring the biodiversity of a habitat and the importance of sampling how to measure species richness and species evenness in a habitat the factors affecting biodiversity the ecological, economic and aesthetic reasons for maintaining biodiversity n situ and ex situ methods of maintaining biodiversity international and local conservation agreements made to protect species and habitats the biological classification of species the binomial system of naming species 	').		12.7 Preventing and treating disease
 how biodiversity may be considered at different levels how sampling is used in measuring the biodiversity of a habitat and the importance of sampling how to measure species richness and species evenness in a habitat the factors affecting biodiversity the ecological, economic and aesthetic reasons for maintaining biodiversity n situ and ex situ methods of maintaining biodiversity international and local conservation agreements made to protect species and habitats the biological classification of species the binomial system of naming species 		antibiotics to manage bacterial	PAG 7.1 Effects of antibiotics on microbial growth
 how sampling is used in measuring the biodiversity of a habitat and the importance of sampling how to measure species richness and species evenness in a habitat the factors affecting biodiversity the ecological, economic and aesthetic reasons for maintaining biodiversity n situ and ex situ methods of maintaining biodiversity international and local conservation agreements made to protect species and habitats the biological classification of species the binomial system of naming species 		 how biodiversity may be considered at 	
 biodiversity of a habitat and the importance of sampling how to measure species richness and species evenness in a habitat the factors affecting biodiversity the ecological, economic and aesthetic reasons for maintaining biodiversity n situ and ex situ methods of maintaining biodiversity international and local conservation agreements made to protect species and habitats the biological classification of species the binomial system of naming species 			 Exchange surfaces and adaptations
 importance of sampling how to measure species richness and species evenness in a habitat the factors affecting biodiversity the ecological, economic and aesthetic reasons for maintaining biodiversity n situ and ex situ methods of maintaining biodiversity international and local conservation agreements made to protect species and habitats the biological classification of species the binomial system of naming species 			- Respiration
 how to measure species richness and species evenness in a habitat the factors affecting biodiversity the ecological, economic and aesthetic reasons for maintaining biodiversity n situ and ex situ methods of maintaining biodiversity international and local conservation agreements made to protect species and habitats the biological classification of species the binomial system of naming species 		-	- Photosynthesis
 species evenness in a habitat the factors affecting biodiversity the ecological, economic and aesthetic reasons for maintaining biodiversity n situ and ex situ methods of maintaining biodiversity international and local conservation agreements made to protect species and habitats the biological classification of species the binomial system of naming species 			- Tissues and organs.
 the factors affecting biodiversity the ecological, economic and aesthetic reasons for maintaining biodiversity n situ and ex situ methods of maintaining biodiversity international and local conservation agreements made to protect species and habitats the biological classification of species the binomial system of naming species 		•	
 the ecological, economic and aesthetic reasons for maintaining biodiversity n situ and ex situ methods of maintaining biodiversity international and local conservation agreements made to protect species and habitats the biological classification of species the binomial system of naming species 			Synoptic links:
 reasons for maintaining biodiversity n situ and ex situ methods of maintaining biodiversity international and local conservation agreements made to protect species and habitats the biological classification of species the binomial system of naming species 			- Prokaryotic and eukaryotic cells.
 n situ and ex situ methods of maintaining biodiversity international and local conservation agreements made to protect species and habitats the biological classification of species the binomial system of naming species 		-	- Cell specialisation and level of organisation
 agreements made to protect species and habitats the biological classification of species the binomial system of naming species 			
 agreements made to protect species and habitats the biological classification of species the binomial system of naming species 		• international and local conservation	Synoptic link:
 and habitats the biological classification of species the binomial system of naming species 			
 the biological classification of species the binomial system of naming species 			
	e	- .	
and the advantage of such a system			
		and the advantage of such a system	

loci = number of polymorphic gene loci total number of loci	 the features used to classify organisms into the five kingdoms: Prokaryotae, Protoctista, Fungi, Plantae, Animalia the evidence that has led to new classification systems, such as the three domains of life, which clarifies relationships the relationship between classification and phylogeny the evidence for the theory of evolution by natural selection the different types of variation the different types of adaptations of organisms to their environment the mechanism by which natural selection can affect the characteristics of a population over time how evolution in some species has implications for human populations Examination technique: understanding key command words within examination style questions to build confidence in student responses.	Common misconceptions:. With regards to the menstrual cycle, research has shown that learners have problems relating the time of conception to the condition of the lining of the uterus. Learners often confuse type 1 and type 2 diabetes, and the effective treatments for each. The effect of ADH on the permeability of the kidney tubules is often confused.
<u>Careers Link</u> Biotechnologists create and improve products and processes for agriculture, medicine and conservation using biological organisms. They study the genetic, chemical and physical attributes of cells, tissues and organisms, and	Homework SENECA learning and examination style questions to support learning and improve skill. Work booklet for homework tasks.	<u>MY PB</u> Social Me- active listening, speaking effectively, working with others Practical work will require resilience and responsibility. Thinking Me – evaluating & creativity Evaluation will be utilised when comparing different methods of microscopy

identify industrial uses for them.	Completion of additional reading and	This is Me – Resilience, responsibility, self-motivation,
	research.	integrity, self-management
		Students will need to demonstrate resilience and self-
		management when looking at the assessed points across
		the lessons

Biology Medium	n Term Overview			
Year 10	Summer term	Title: Neuronal and Hormonal communication and year 12 mock revision		No of Lessons:24
Overview This term will be used to support year 12 students in revising for their mock examinations and identifying any curriculur how to close these curriculum gaps through bespoke revision techniques and revision lessons to support growth in lear science. This term will also be used to summarise neuronal and hormonal communication.				
Assessment Students will be assessed through a series of mock examinations and lesson time will be used to revise for, feedba intervene where needed to support learning of exam techniques within Biology.				
Essential Knowledge	e (what must students know):	Essential Skills (what must students be able to demonstrate):	Lessons to cover	
• The stimulation of sensory receptors leads to thegeneration of an action potential in a neurone.		Learners should be able to demonstrate and	Chapter 10 assessment Chapter 10 intervention	
		apply their knowledge and understanding of:Year 12 mock revision x4Year 12 mocks x4		x4

- Transmission between neurones takes place at synapses.
- The ways in which specific hormones bring about their effects are used to exemplify endocrine communication and control.
- Type 1 diabetes is used as an example to ٠ demonstrate how medical technology is used to regulate the hormonal control systems

Examination technique: understanding key command words within examination style questions to build confidence in student responses

- the roles of mammalian sensory Mop up PAGs and mock intervention x4 ٠ receptors in converting different types 13.1 Coordination of stimuli into nerve impulses 13.2 Neurones the structure and functions of sensory, 13.3 Sensory receptors ٠ relay and motor neurones the generation and transmission of ٠ nerve impulses in mammals the structure and roles of synapses in ٠ neurotransmission endocrine communication by hormones ٠ the structure and functions of the ٠ adrenal glands the histology of the pancreas ٠ how blood glucose concentration is . regulated the differences between Type 1 and • Type 2 diabetes mellitus the potential treatments for diabetes ٠ mellitus Practical skills:
 - PAG1 HSW4
 - the examination and drawing of stained ٠ sections of the pancreas to show the histology of the endocrine tissues
 - the structure and functions of the ٠ adrenal glands
 - To include the action of insulin and • glucagon as an example of negative feedback, and the role of the liver AND the control of insulin secretion, with

13.4 Nervous transmission 13.5 Synapses 13.6 Organisation of the nervous system 13.7 Structure and function of the brain Brain dissection

Common misconceptions:.

Some students do not understand that plant hormones are still chemical messengers that provide a localised response. Students need to be clear that plant hormones are heavily linked to tropisms.

	 reference to potassium channels and calcium channels in the beta cells of the pancreas. PAG11 HSW4 To include the role of hormones in leaf loss in deciduous plants, seed germination and stomatal closure. Learners should be able to apply their knowledge and understanding to different experiments. Learners are not required to recall specific experiments. Learners should be able to apply their knowledge and understanding to different experiments. Learners are not required to recall specific experiments. Learners should be able to apply their knowledge and understanding to different experiments. Learners are not required to recall specific experiments. 	
Careers Link Biomedical research assistant. Biomedical technician. Pharmaceutical sciences manager. Biologist. Cancer research scientist. Biomedical engineer. Clinical trials administrator	Homework SENECA learning and examination style questions to support learning and improve skill. Work booklet for homework tasks.	MY PB Social Me- active listening, speaking effectively, working with others Practical work will require resilience and responsibility. Thinking Me – evaluating & creativity Evaluation will be utilised when comparing different methods of microscopy This is Me – Resilience, responsibility, self-motivation, integrity, self-management Students will need to demonstrate resilience and self- management when looking at the assessed points across the lessons